Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.07.08.499333

Résumé

Artificial intelligence (AI) programs that train on a large amount of data require powerful compute infrastructure. Jupyterlab notebook provides an excellent framework for developing AI programs but it needs to be hosted on a powerful infrastructure to enable AI programs to train on large data. An open-source, docker-based, and GPU-enabled jupyterlab notebook infrastructure has been developed that runs on the public compute infrastructure of Galaxy Europe for rapid prototyping and developing end-to-end AI projects. Using such a notebook, long-running AI model training programs can be executed remotely. Trained models, represented in a standard open neural network exchange (ONNX) format, and other resulting datasets are created in Galaxy. Other features include GPU support for faster training, git integration for version control, the option of creating and executing pipelines of notebooks, and the availability of multiple dashboards for monitoring compute resources. These features make the jupyterlab notebook highly suitable for creating and managing AI projects. A recent scientific publication that predicts infected regions of COVID-19 CT scan images is reproduced using multiple features of this notebook. In addition, colabfold, a faster implementation of alphafold2, can also be accessed in this notebook to predict the 3D structure of protein sequences. Jupyterlab notebook is accessible in two ways - first as an interactive Galaxy tool and second by running the underlying docker container. In both ways, long-running training can be executed on Galaxy’s compute infrastructure. The scripts to create the docker container are available under MIT license at https://github.com/anuprulez/ml-jupyter-notebook . Contact kumara@informatik.uni-freiburg.de anup.rulez@gmail.com


Sujets)
COVID-19
2.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.01.14.476382

Résumé

Among the 30 non-synonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (i) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (ii) interactions of Spike with ACE2 receptors, and (iii) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and, in combination with other mutations, adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron over all previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.


Sujets)
Crises épileptiques
3.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.03.25.437046

Résumé

The COVID-19 pandemic is the first global health crisis to occur in the age of big genomic data. Although data generation capacity is well established and sufficiently standardized, analytical capacity is not. To establish analytical capacity it is necessary to pull together global computational resources and deliver the best open source tools and analysis workflows within a ready to use, universally accessible resource. Such a resource should not be controlled by a single research group, institution, or country. Instead it should be maintained by a community of users and developers who ensure that the system remains operational and populated with current tools. A community is also essential for facilitating the types of discourse needed to establish best analytical practices. Bringing together public computational research infrastructure from the USA, Europe, and Australia, we developed a distributed data analysis platform that accomplishes these goals. It is immediately accessible to anyone in the world and is designed for the analysis of rapidly growing collections of deep sequencing datasets. We demonstrate its utility by detecting allelic variants in high-quality existing SARS-CoV-2 sequencing datasets and by continuous reanalysis of COG-UK data. All workflows, data, and documentation is available at https://covid19.galaxyproject.org.


Sujets)
COVID-19
4.
preprints.org; 2020.
Preprint Dans Anglais | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202009.0457.v1

Résumé

The COVID-19 pandemic is shifting the teaching paradigms to an online setting all over the world. The Galaxy framework caters to computational biologists a set of features to facilitate the online learning process and make it accessible to everyone. Besides the high-quality training materials, Galaxy provides easy access to data and the possibility to share the progress and achievements, both student to student and student to instructor. By combining the different features offered by the Galaxy framework and by choosing the adequate communication channels, effective training activities can be designed inclusively, regardless of the students' environments.


Sujets)
COVID-19
5.
preprints.org; 2020.
Preprint Dans Anglais | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202008.0532.v1

Résumé

The COVID-19 outbreaks have caused universities all across the globe to close their campuses and forced them to initiate online teaching. This article reviews the pedagogical foundations for developing effective distance education practices, starting from the assumption that promoting autonomous thinking is an essential element to guarantee full citizenship in a democracy and for moral decision making in situations of rapid change, which has become a pressing need in the current context. In addition, the main obstacles related to this new context are identified, and solutions are proposed according to the existing bibliography in learning sciences.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche